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The Accuracy of the Approximations 
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The mathematical approximations involved in the theory of homogeneous nucleation 
are shown to produce negligible error in the predicted rates of nucleation. 
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In the previous paper (1) J. L. Katz has discussed the corrections to classical nucleation 
theory which arise from the distinction between a thermodynamic drop of liquid 
and a "cluster" of  molecules. In this paper we shall investigate the mathematical 
approximations which are inherent in proceeding from the classical theory to the 
practical working expressions. Although the discussion here will restrict itself to 
the classical theory, it is expected that the conclusions of the paper will be valid 
also for any modifications of  that theory. In particular, we shall show that there 
is no significant error in the calculated nucleation rates due to the mathematical 
approximations which are usually made, and that any errors introduced by the 
mathemat i ca l  approximations are generally unimportant even for a "critical" nucleus 
containing as few as ten molecules. 

The "classical" theory of  nucleation leads to the following expression for the 
rate of nucleation, 

= sini 

where n~ is the density of embryos containing i molecules and s~ is the surface area 
of  such an embryo. 

1 Science Center/North American Rockwell Corporation, Thousand Oaks, California 91360. 
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With the assumption that s~ = s~ 2/3, and using the classical expression for the 
free energy of an embryo, one obtains m 

c o  

J = ~s~ i-2: a exp[-- i  In S -k 7i ~/3] =-- j~s~ (2) 

where 7 = ~Trt/3(6Vo)~/3/kT, and S is the supersaturation, P/P~. 
The sum can be evaluated by noting that the maximum term occurs for i approxi- 

mately equal to 2 = (27/3 in S) z ---- ~3 which in most  instances is much larger than 1. 
The sum I can therefore be approximated by an integral: 

oo <:0 

I ' ~  f x -2 /aexp[- -x lnS  q- 7x2/3]dx = 3 f exp(7 u 2 -  ualnS) du 
0 0 

(3) 

The first approximation, the replacement of  the sum I by the integral I', can be 
investigated numerically quite readily. The error in this replacement will be significant 
only if ~ is small. In such a case one may expand the exponent in Eq. (3) in a power 
series and obtain a relatively rapidly convergent expression: 

r 

I' -~ f x-~/ae-~lns ~ (n!) -1 (7x2/~) n dx 
0 

7~r[(2n + 1)/3] 
~'  n!(ln S)~Zn+l)/~ 

(4) 

Equation (4) can be compared with the direct evaluation of the sum in Eq. (2). 
The results of  some numerical calculations are shown in Fig. 1. For all supersatura- 
tions the error in replacing the sum by an integral is of  little importance for any 
nucleation rate of  practical interest, for which I is in the range 1015 to 108~ The 
small values of  I covered by Fig. 1 would correspond to nucleation rates which are 
physically meaningless. The ratio I ' / I  differs significantly from unity only for rates 
of  nucleation larger than 1024 nuclei cm -3 sec-k At such enormously high rates the 
central assumption of nucleation theory-- the  existence of an equilibrium thermo- 
dynamic distribution of cluster sizes--must certainly break down. We therefore 
conclude that, for any realistic situation, the approximation of replacing I by I '  
causes negligible error in the calculation. 

In order to evaluate I' for larger values of~  = ~z/a, we can write, with t = u - -  

oo 

I '  = 3e ~/2 f exp[--  ~-~t 2 In S - -  t 3 In S] dr, 
- - f f  

p = x In S (5) 

The integrand is approximately Gaussian with a standard deviation of (3g In S) -1/2 
in the variable t. This transforms into a relative standard deviation a~/~ = (�89 In S)-1/~. 
The accuracy with which the Gaussian approximates the integrand is therefore 
determined by the parameter p = ~ In S. I f  ~/a~ = (27)3/2/9 In S > 3 there is little 
error in extending the lower limit of  the Gaussian integral to --  oo. To do so, however, 
one must be able to neglect the cubic term in the exponential. This may be done, 
since for t = --~ the exponent is - -  �89 In S. Neglecting the term t ~ In S gives an 
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Fig. 1. The ratio of the approximating integral I '  [Eq. (3)] to the discrete summation I, for various 
values of supersaturation S. For  each value of S" the curve is plotted only for x ~> 1. All of the values 
of I in this figure correspond to unrealistically rapid nucleation rates; for realistic rates and super- 
saturations the error in replacing the sum by an integral is completely negligible. 

exponent --  ~ In S. For  p =- 2 In S >~ 1 the relative difference in the two expo- 
nentials e-a~/2 and e-~/2 is extremely large, but since each is still small in com- 
parison with unity little error is introduced in any case. 

I f  we therefore neglect the cubic term in the exponent and allow the lower limit 
of  the integral to go to --co we find 

I '  ~ f0 = u(6zre~/P) 1/2. (6) 

Equation (6) represents the usual approximation. 
In order to evaluate the error in replacing I '  by Io, the integral can be rewritten, 

by adding and subtracting I 0 , in the exact form 

Z '=  Zo + 

z o  

= I0 + 3e ~/~ 12 f~ [cosh(t31n S) -- 1] e--'t~dt -- fa e - " ~ [ 1 -  e-~l~s] dtl 
(7) 

The integrand in the first integral has a maximum at t*, where 

t* = g tanh(�89 *~ In S), 0 < t* < g, (8) 
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at which point the integrand has the value 

2t .2 exp(--yt *~) 
~ 2  __ t * 2  

The integral is therefore bounded by 

~2 

0 < 2 f e-'*~[cosh(t a In S) -- 1] dt < Az = 4gt*2(g 2 -- t*2) -a exp(--y .2) 
0 

We can also write for the second integral, 

f 
| e-~,a= 

e-~*'(1 -- e -*qns) dt < As  = - -  
a 2y~ 

(9) 

(lO) 

If  t* >~ g, we can solve Eq. (8) approximately to obtain 

�89 In S = �89 .2 = 1 (11) 

Then �89 *a In S ----- v '2 /p  is small, justifying the expansion of the hyperbolic tangent 
leading to (9). A series expansion for the root of (8) can be written: 

1 17 
,* =  ,/2W [1 + V +  + ..-] 

I f p  >> 1, Ae = (~/3p) exp(--3p/2) will be much smaller than A 1 and we find 

24e-a 
0 <~ (I '  - -  Io)/Io <~ (67rp)Z/-------- q [1 + 0(l/p)] (12) 

Although Eq. (12) provides bounds on the value of I ' ,  these bounds are not 
extremely close. The bound 0.2752(~ In S)  -z/z gives (I '  - -  Io)/lo < 0.055 for ~ In S = 25, 
and (I '  - -  Io)/Io < .0275 for ~ in S = 100. The actual values are 0.0121 and 0.002835 
and the correct behavior is more nearly proportional to 1/1o than to 1/v'p. 

A more precise evaluation of Eq. (5) can be found by expanding the factor 
exp(--P In S) in a power series: 

I '  = 3e~/2 f e -'t~ (ln S) 2'~ t6 ~ _ (In S) ~'~+z 
-a 0 2n ! ~=0 (2n -~ 1)! t6n+a dt 

I f  one now simply interchanges the order of summation and integration, the resultant 
sums are divergent. We can however obtain an asymptotic expression by carrying 
the sums to a finite limit and bounding the remainder term. We find 

~,/ ~r [ N-~ (lnS)~n ( 6 n -  1)!! [[ (2N/e)3IN~] 
I ' = 3  v - 7  -e" k lq-  ,~=~2 (2y)a~ (2n)! q- O \[  ~Tn--s-J ]J @y-1/20(e-~~ 

(13) 
In this expression the term containing o(e -~) represents the term A= calculated in 
Eq. (9), whereas the other "order" term expresses the effect of the truncation of 
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the series expansion. Since for N--~ oe this term is not small but grows without 
bound, we choose a value of  N which is smaller than that value which will make 
the expression in the parentheses a minimum. Equation (13) is then a valid asymptotic 
expansion for I'. We find 

5 385 85085 
I '  = I0[1 .4- 18(21nS) + 648(21nS) ~ ~ 34992(21nS) 3 +  ""] (14) 

Although Eq. (14) is an adequate expression only for ~ In S>~ 1, this is actually 
the only region of  parameter space which is of practical interest in homogeneous 
nucleation, for which 2 In S is always of the order of  100. For  methanol at 300~ 
supersaturation varying from 1.54 to 1.77 changes the nucleation rate from 
1 cm -a sec - t  to 1012 cm -3 sec -1, while s In S changes only from 125 to 71. As another 
example, for mercury at the same temperature, S varies from 4.1 x 106 to 88.6 x l0 G 
to produce the same 1012 change in nucleation rate, but s In S is 140 for 1 cm 4 sec -z 
arid 97 for 1012 cm -3 sec 4 .  The value of the summation in Eq. (1), therefore, lies 
in all cases of  practical interest above 101~ in which case the approximation I 0 is 
accurate to better than 1%.  

Figures 2a and 2b show the deviation of the sum I from its asymptotic value Io 
for the range of parameters of practical interest. Figure 2a covers the range of values 
of S appropriate to water and organic liquids. Figure 2b extends the data to values 
appropriate to metals such as mercury with large surface tensions. The oscillations 
in the ratio I / I  o which are present in Fig. 2b but are absent in Fig. 2a reflect the 
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Fig. 2a. The deviation of I from its approximating value I0, for the range of parameters appropriate 
to water and organic compounds. In order to indicate the region of practical interest a scale of 
nucleation rates for water and methanol at 300~ is also indicated. 
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Fig. 2b. The deviation of I from its approximating value Io, for the range of parameters appropriate 
to mercury and other high-surface-tension liquids. In order to indicate the region of practical interest 
a scale of nucleation rates for mercury at 300~ is also indicated. 

discrete nature of  the sum L When In S is larger than (2~/z - -  1 ) y -  ~ In 2 = 
0,58747 - -0 .4621,  the first term in the summation is the largest. In such a case 
the replacement of  the sum by a Gaussian integral is obviously invalid. It is indeed 
surprising that even in these extreme situations the mathematical approximation 
is as good as it turns out to be. In practical situations none of  these anomalies are 
important as indicated by the scales in the figures which indicate the range appropriate 
to realistic rates of  nucleation for typical liquids. For p ~ ~ In S > 50 (I  roughly 
larger than 101~ ) the error introduced by using the asymptotic expression is less 
than 1% and decreases with increasing p. For any practical supersaturation the 
error, for fixed p, is independent of  S. Although these conclusions are based on 
calculations with the classical model, Figs. 2a and 2b should also apply with 
reasonable validity to any of  the nucleation models which are considered by Katz, m 
when expressed in terms o f  the value of  2, the size of  the critical nucleus, calculated 
for that particular theory. 

R E F E R E N C E  

1o J. L. Katz, Y. Stat. Phys. 2(2):137 (1970). 


